
International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 9 - September 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 65

Cyber Physical System Security Model For

Remote Sensing Device Protection: A Technical

Review
Dr. Silvance Abeka

School Of Informatics and Innovative Systems

JaramogiOgingaOdinga University of Science & Technology

Abstract

Remote sensing devices have emerged as a significant

technology that enables the monitoring of processes

and physical environment from far away locations.

These remote sensing systems include physiological

sensors installed on human body to continuously

monitor the health and enable the fast detection of

medical emergencies and the delivery of therapies

(Body Area Networks-BAN), smart buildings that detect

absence of occupants and shut down the cooling unit to
save energy, data centers that use solar energy for

cooling purposes, and unmanned aerial vehicles

(UAVs) that use an image of the terrain to perform

surveillance. They have been used to provide services

such as automated pervasive health care, smart

electricity grid, green cloud computing, and

surveillance with UAVs. Since these systems utilize

information from the physical environment and in turn

affect the physical environment during their operation,

any vulnerabilities, threats and attacks can expose the

monitored process or physical environment to a number
of risks. This paper seeks to develop Cyber Physical

System Security Model for protecting remote sensing

devices. The paper also investigatedthe tight coupling

between the cyber and the physical in Cyber Physical

Systems (CPSs), to establish the various forms of risks

that have not been considered adequately in the

traditional computing domain such as the cyber

element adversely affecting the physical environment.

Keywords: Remote Sensing Systems, Risk Anaysis, Body

Area Networks, Supervisory Control and Data

Acquisition,Industrial Control System, Cyber Physical
System

I. Introduction

Infrastructure constitutes any physical asset capable of

being utilized to produce services or support the
structure and operation of a society or an enterprise and

include roadways, bridges, airports and airway

facilities, mass transportation systems, waste treatment

plants, energy facilities, hospitals, public buildings and

space or communication facilities. Critical

infrastructure on the other hand consist of physical,

virtual facilities and services that form the basis for a

nation‟s defense, a strong economy, health and safety of

its citizens. It is charged with the provision of

necessities such as water and food, electricity and gas,
telecommunications and broadcasting, health services,

the financial system and the transportation system.

Every critical infrastructure constitute of an Industrial

Control System (ICS) that is made up of Supervisory

Control and Data Acquisition (SCADA) systems and

other types of control systems that monitor processes

and control flows of information. ICS serve to regulate

the flow of natural gas to a power generation facility or

the flow of electricity from a grid to a home. Cyber

systems form the central infrastructure of critical

sectors as nearly all of them utilize IT to facilitate core
business processes. Given their high value nature, the

cyber systems of critical infrastructure have become

targets for attack, and their disruptions have led to

extensive economic, political and social effects.

The cyber systems consist of various software, the

development of which, according to Sebastian and

Stephan (2018), comprises of diverse activities such as

implementing new features, analyzing requirements,

and fixing bugs. Universal satellite and data

connectivity is one of the major advancements in
seafaring. Many critical systems on board rely on the

Global Navigation Satellite System (GNSS) for safe

navigation, communication, emergency response, and

traffic control. However, disrupted or manipulated

Global Positioning System (GPS) signals can send

ships off their course and cause collisions, groundings,

and environmental disasters (Dennis et al., 2017).

Threats to critical infrastructures are perpetrated

through electronic, radio-frequency or computer-based

attacks on the information components that control
these critical infrastructures. In addition, these critical

infrastructure systems have vulnerabilities that can be

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 9 - September 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 66

exploited through threat vectors, which can be technical

or non-technical. Despite the growth in application

security testing over time, applications executing in

critical infrastructures still remain insecure. Scans of

thousands of applications and billions of lines of code

have found a widespread weakness in applications,
which has become a top target of cyber attackers.

According to Tobby (2017),the Internet of Things (IoT)

is a vital concept embedded within a larger spectrum of

networked products and digital sensors. This

technology has caused an explosion of applications,

marking a fundamental shift in the way human beings

interact with the Internet and presenting both

opportunities and challenges, particularly with respect

to critical infrastructure. For instance hackers have used

IoT devices such as printers, thermostats and

videoconferencing equipment to breach security
systems.

The Internet-enabled infrastructures have facilitated

home automation, energy-management systems, smart

homes, network-enabled medical gadgets, intelligent

vehicles, networked traffic systems, road and bridge

sensors, innovations in agricultural, industrial, energy

production and distribution. Although this has opened

up numerous avenues for efficiency, the unregulated

rise of the IoT raises a plethora of issues such as

security and privacy of people, telecoms networks and
power utilities. This is due to illegitimate breaches of

the networks undergirding critical infrastructure since

the efficiency of Internet connectivity also accelerates

susceptibility to security violations through the misuse

of IoT data.

Although an ICS is air-gapped and hence a closed

system, it may not be vulnerable to virtual attacks but is

still susceptible to attacks perpetrated through physical

access such as from infected removable devices. As

technology continues to grow, a number of ICSs have

been connected to the Internet, making them vulnerable
to multifarious attacks. Computers and communications

being critical infrastructures in their own right are

increasingly connecting other infrastructures together.

The increased connectivity means that a disruption in

one network may lead to disruption in another and

hence reliance on computers and networks increases

critical infrastructure‟s vulnerability to cyber attacks.

According to Arash and Stuart (2015), CPS provides

the control of physical components through cyber based

commands and its operations are integrated, monitored,
or controlled by a computational core. By integrating

actuators, control processing units, sensors, and

communication cores, a CPS forms a control loop for

each of the physical component of the system. The

major components of a CPS are SCADA, distributed

control system (DCS), and program logic controller

(PLC).

The SCADA systems gather and control geographically

dispersed assets ranging from controlling sensors within
a plant to controlling power dissemination in a country.

They are heavily utilized in various critical

infrastructures such as electrical power grids, water

distribution systems, and oil refineries. On the other

hand, DCS manages the controllers that are grouped

together to carry out a specific task within the same

geographically location. Both SCADA and DCS

employ PLC devices to manage industrial components

and processes. PLCs are typically programmed from a

Windows-based machine by an operator. The operators

utilizes SCADA and DCS for various controlling tasks

such as process monitoring and configuring control
parameters.

In their paper, Lange et al., (2016) point out that the

success of a business mission is highly dependent on

the Communications and Information Systems (CIS)

that support the mission. As such, cyber attacks on CIS

degrade or disrupt the performance and completion of

the associated mission capability. On an operational

level, an electrical grid‟s mission is to deliver electricity

from suppliers to consumers. For monitoring and

control purposes, they are connected to CIS. The
operability, performance, or reliability of an application

may depend on multiple network services spanning

multiple network devices and sub-networks of an

infrastructure.

The risks associated with vulnerable software deployed

in enterprise environments have exposed customer data

or intellectual property and can be caused by attackers

exploiting weaknesses in web applications or desktop

software. Lack of consistent, proactive policies to

manage vulnerabilities associated with the Bring Your

Own Device (BYOD) trend. Mobile devices come with
one huge challenge of ensuring that all valuable

information is secure and the increasing number of

these devices elevates the threat of accidental and

intentional security breaches. As such, verifying the

security of the software being downloaded to those

devices is becoming a business priority. This is

important since platforms such as Google‟s Android do

minimal vetting of the safety of applications before

permitting consumers to download from their App

store.

Application security performance has been noted to

reduce greatly owing to a number of factors such as the

vulnerabilities in commercial software that permit

remote code execution and backdoor functionality,

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 9 - September 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 67

cross-site scripting and SQL injection inherent in

Government applications than other industry sectors,

and a number of Android applications that were found

to contain hard-coded cryptographic keys.

According to Mark (2017), mission function is
increasingly delivered in software. For instance,F-35

aircraft depends on more than twenty million lines of

code to fuse information from the JSF's radar, infrared

cameras, jamming gear, other planes and ground

stations. This aids it to locate and hide from opponents,

as well as break through enemy lines to hit targets on

the ground. Steel furnaces have been successfully

attacked, causingmassive damage to furnace. This is

exampled by a targeted APT attack on a German

steelworks which ended in the attackers gaining access

to the business systems and through them to the

production network, including SCADA. Consequently,
the attackers gained control of a steel furnace, causing

massive damages to the plant.

In addition, electric grids have come under attacks, such

as the BlackEnergy Trojan that attacked Ukrainian

electric power industry. The weapons platforms have

also become potential cyber attacktargets.The Joint

Strike Fighter aircraft relies on more than twenty

million lines of code and the Pentagon canceled a cyber

test due to concerns it would damage the Autonomic

Logistics Information System that identifies broken
parts and other faults. On their hand, embedded systems

present new classes of vulnerabilities owing to their

different characteristics compared to other systems.

They present more and varied attack surfaces such as

sensors, multiple command-and-control masters,

embedded firmware, unique internal busses and

controllers, size, weight, power and latency that

demand tradeoff against defense-in-depth, timing

demands that offer potential side channels such as bit

and clock cycle level operations, physical resources

with real time sensors, safety-critical real-time

operating system, confusion between failure resilience
and attack, and intermittent communications.

Connecting automotive systems to internet opens

system to attack as this system extensions opens

vulnerabilities not anticipated during the design.

Moreover, optimizations performed assume one attack

method and this assumption no longer hold due to

additional integrations. This new operational

environment is a major cause for the introduction of

new vulnerabilities in existing systems. Machine-

learning based systems increase systems exposures. For
instance Tesla car's driverless technology failed to

detect the white side of the tractor-trailer against a

brightly lit sky, and hence never activated its brakes.

This shortcoming can be attributed to the fact that

although conventional code development techniques of

modest could have helped, operations are driven by

high volume, high velocity sensor data, and that

decision making is based on trained models of

behaviors, which experience some limits.

II. Related Work

A study by Noel et al., (2016) pointed out that the Vital

Infrastructure, Networks, Information and Control

Systems Management (VIKING) project was to

investigate the vulnerability of SCADA systems and the

cost of cyber attacks on society, focusing on systems

for transmission and distribution of electric power. This

was achieved by adopting a model-based approach to

investigating SCADA system vulnerability. According
to Motzek and Möller (2017), mission impact has to be

considered in the context of what impact the adversary

desires, meaning that if knowledge or estimation of the

intents, motivations and anticipations of the adversary

is possible, then the impact of the adversary on

missions or the intended impact would be easier to

assess.

Mark (2017) explains that catching software faults early

saves money as these faults accounts for 30‒50%

percent of total software project costs. Tobby (2017)
points out that whereasthe change in ICS architecture

supports new information system capabilities, it

provides significantly less isolation for these systems

from the outside world. This introduces vulnerabilities

that exist in current networked information systems.

Some of the shortcomings of these ICSs include

outdated and difficult to update software, sensors and

controls running many contemporary facilities and

equipment. This means that organizations are unable to

incorporate new features and improvements. There is

also inadequate integration between internal systems

such as managerial apps, plant data sources, and
external partners, which creates data silos. Aging

operating systems and vulnerable operational

technologies pose security risks because they cannot be

easily retired or replaced. Moreover, as Daugherty et al.

(2015) explains, there is limited embedded computing

or intelligence control at the device, product or plant

level.

Tobby (2017) discuss that all critical infrastructure

systems have vulnerabilities that can be exploited

through threat vectors. These vulnerabilities may be
technical or non-technical. Whereas technical

vulnerabilities are application-based, non technical ones

are common Internet protocols vulnerabilities. The core

protocols such as IP, TCP and HTTP were created and

implemented without factoring in security features

since the Internet was initially used to serve academic

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 9 - September 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 68

and governmental environments, wherein the users

were trusted entities.

Randy and Susan (2016) point out thatdevelopers need

knowledge on secure coding techniques and tools that

render software reliable, robust, and secure. Secure

software design is vital to prevent loss of data,

premature leaks of data and downtime of resources. The

main reason for the escalation of cyber attacks in the

field of critical infrastructure (CI) is that most control

systems used for CI do not utilize propriety protocols
and software any more, but standard solutions. This

implies that critical infrastructure systems are becoming

vulnerable and exposed to cyber threats.

A major factor for the decreasing security of SCADA

networks is the use of commercial off-the-shelf (COTS)

hardware and software to develop devices. In their

report, Katerina and Jacob (2017) explain that space

missions provide valuable services to the society from

navigation, to earth observation, weather forecasting,

and communication. As such, space missions are part of
the critical infrastructure and are regularly targeted by

attackers. For instance, NASA experiences 29,000

malicious incidents against its systems, 17,500

suspicious e-mails, and 250 unique incidents against its

web sites on a weekly basis. It is therefore vital to

utilize software development and assurance practices

that account for cyber security concerns.

Chris (2017) analyzed some software vulnerabilities

and established that many applications are not being

assessed for security at all. This has facilitated cyber

attacks on elections in the U.S. and other democracies,
demonstrating that most critical systems are in the

cross-hairs. Global cyber attacks on a massive scale

such as the WannaCry and Petya ransomware attacks,

cyber attacks on electric utilities, cyber wars between

nation states have all created a sense of urgency of

tackling the problem of insecure software.

Unfortunately, more attention has drifted away from

prevention towards detection and response.

Arman et al., 2018 explains that software architecture

includes many variation points that can take on one of a
set of possible alternatives such as employing either an

encrypted or plain-text data storage, using a relational

database, a document database, or a key-value store. A

design decision involves the selection of one of these

alternatives. During decision making, architects

carefully assess each alternative and how it satisfies or

affects each of the system‟s requirements.

Unfortunately, this is frequently not done in practice.

An illustration of ineffective design-decision impact

assessment is the Healthcare.gov portal that resulted to

serious technical problems at launch and a development

cost. The portal‟s downtimes of up to 60% were caused

by flawed architectural and deployment design

decisions. The system was deployed using a single-

node NoSQL database that also stored federal

government employee information instead of using a

distributed database configuration.

III. Approach

This paper utilized secondary data from mission critical

security reports, cyber security reports, government
website data, security expert opinions and past research

papers to get a glimpse of the state of mission critical

security issues.

IV. Empirical Analysis of Mission Critical Security

Issues

Di Martino et al. (2014) analyzed the failures of the

Blue Waters, the Cray hybrid (CPU/GPU)

supercomputer, and found that software was the largest
contributor to the node repair hours (53%), even though

it caused only 20% of the total number of failures. The

security vulnerabilities published in the Bugtraq

database and CERT advisories have been analyzed. Out

of the twelve classes used to classify 5,925 Bugtraq

reports on software related vulnerabilities, five classes

dominated: input validation errors (23%), boundary

condition errors (21%), design errors (18%), failure to

handle exceptional conditions (11%), and access

validation errors (10%).

In their paper, Lange et al., (2016) report that the

energy sector reported an increase in frequency and

sophistication of cyber attacks on electricity systems.

Hambling, (2017) found out that multiple ships

outbound from the united states have reported GPS

interferences and reports have emerged of more than 20

vessels which noticed spoofed GPS signals that placed

them about 25 nautical miles inland. The National

Institute of Standards and Technology, (2017) explains

that this is alarming considering that these are naval

vessels carrying advanced weaponry as well as the

commercial shipping sector, which is part of the critical
infrastructure and accounts for more than 90% of cargo

transported globally.

Navalservices such as voice communications, crew

welfare and entertainment systems, guest Wi-Fi, and

video monitoring are perceived to be less critical to

safety and operations and hence routinely left

unpatched and exposed to attacks. The IT networks in

ships are employed for accounting, cargo management,

customs and shipping, human resource planning, and

administration. According to Hudson AnalytixInc,
(2017), a malware outbreak in 2017 paralyzed IT

networks across the world and caused significant

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 9 - September 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 69

business disruptions and loss of revenue. The Symantec

Security Response, (2017) point out that the NotPetya

worm initially infected computers through a malicious

update in an accounting software product, which then

spread to attached systems, wiping or encrypting files

and demanding ransom payments. This can be
attributed to the fact that the design and configuration

of the links between IT networks seldom take into

account authentication and encryption methods, hence

exposing potential vulnerable and legacy system to the

internet. Since IT systems on vessels are often

connected with onshore facilities, this further increases

the exposure to systemic and persistent threats.

The Electronic Chart Display Information System

(ECDIS) mandated by the International Maritime

Organization (IMO) for all commercial vessels is

normally installed on the bridge. Unfortunately, the
ECDIS software implementations have a number of

weaknesses such as running on legacy computers for

which no security updates are available, maps get

loaded onto the system either via the internet, USB or

DVD, sensor feeds comes from a multitude of other

onboard systems such as Radar, Navigation Telex

(Navtex), ICS, and satellite terminals. This provides a

wide surface for any attack. Commercial ECDIS

software has some significant security risks that allow

attackers to replace or delete files on the system or

inject malicious content. Consequently, tampered
sensor data could be sent to ECDIS, which would

influence decisions for navigation, and may cause

collision or grounding.

Santamarta (2014) tested a range of Very Small

Aperture Terminal (VSATs) from multiple

manufacturers and established that all audited devices

are vulnerable at the protocol and implementation level

as they transmit in plain text without authentication,

encryption, or integrity checks. This can allow an

attacker to inject fake signals or malicious code to

cause device to shut down or corrupt the system,
disabling the ship from navigating safely.

An empirical study by Grottke et al.(2010) based on

space mission data analyzed 520 anomalies from the

flight software of eighteen JPL space missions and

reported that 61% of bugs were Bohrbugs (bugs easily

isolated and removed during software testing) and 37%

were Mandelbugs (bugs that behave chaotically).

Alonso et al. (2013) analyzed the mitigation associated

with the Bohrbugs and Mandelbugs. Based on the

analysis of bug reports of four open-source software

systems, Cotroneo at al. (2013) classified software bugs
as Bohrbugs, non-aging-related Mandelbugs, and

aging-related bugs.

As shown in Figure 1, software security is a lifecycle

issue consisting of three major steps, requirements and

acquisition (mission thread, threat analysis and abuse

cases), engineering and development (abuse cases,

architecture and design principles - A & DP, coding

rules and guidelines - C R & G, Testing, validation and

verification -T V&V), and deployment and operations

(Testing, validation and verification -T V&V,
Monitoring, and breach awareness - BA). This figure

illustrates that these three steps overlap each other, with

the first step overlapping with the second one, and the

second one overlapping with both the first and third

step.

Figure 1: Software Security Life Cycle

Mission

Thread

 Threat

 Analysis

Abuse

Cases

A &

 DP

C

R &G

T

V &V

 Monitoring

BA

Requirements & Acquisition

Engineering & Development

Deployment & Operations

Sustainment

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 9 - September 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 70

However, it was established that 19% of software

engineers fail to execute security requirement

definition, 27% do not practice secure design, 72%

never employ code or binary analysis, 47% never

perform acceptance testing for third party code, and

more than 81% fail to coordinate their security practices

in various stages of the development life cycle as

shown in Figure 2.

Figure 2: Statistics on Software Security Life Cycle

The rise of open source software is another security

challenge as 90% of modern applications were

established to be assembled from third party

components and at least 75% of organizations depend

on open source as the foundation of their applications.

Up to 1.8 billion vulnerable open source components

had been downloaded in 2015, 26% of which have high

risk vulnerabilities

The 2008 explosion of the majority Baku-Tbilisi-

Ceyhan pipeline in Turkey was a digital attack in which

unidentified hackers infiltrated the pipeline through a

wireless network, tampered with the systems and

caused substantial physical damage in an explosion. On

its part, Stuxnet was a precision attack causing physical

damage to Iranian nuclear centrifuges by directing them

to spin out of control while simultaneously playing

recorded system values that indicated normal

functioning centrifuges during the attack. According to

Hayden et al., (2014), one of the most touted ICS cyber

incidents was the unauthorized release of sewage as the
result of malicious operation.

As Kwon, (2015) noted, DarkSeoul that affected 48,000

computers in South Korea disrupted network systems

and erased hard disks. It also made attempts to

penetrate South Korea‟s nuclear power plants. Russia-

based hackers have been able to cause power blackouts

across Ukraine in the first full-fledged attack on an

electricity distribution network (Vallance, 2016). The

malware was embedded in Microsoft Word documents

which once opened, installed itself. Firewalls managed

to prevent the attacked computers from gaining control

of larger systems. However, an improved version of this

malware, BlackEnergy 3, managed to obtain passwords

and login details, through which another attack was

launched. The attackers remotely logged into SCADA

systems, remotely controlled them, cut power at 17
substations, and jammed company communications

such that engineers had difficulty gauging the extent of

the blackout.

Georgios et al., (2016) explain that developments in the

IT world that could spill over to production

environments. As such, attacks in the IT infrastructure

will find their way into mission critical systems. The

OpenSSH implement the secure communications

protocol SSH which is then used to securely

communicate over the internet. However, the roaming

vulnerability, inherent in about 70% of all installed
SSH clients facilitates both credential stealing and

buffer overflow. The transport layer security (TLS) on

its part still supports obsolete, less secure encryption

protocols that have enabled DROWN attacks, through

which attackers acquire and decrypt session‟s

encryption key. With this knowledge, the whole

communication can be decrypted. Domain Name

Service (DNS) has been employed to compromise

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 9 - September 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 71

industrial control installations through DNS Squatting.

The Android mobile operating system has been

attacked by Triada which infects the OS template

utilized to activate applications. As such, it is present in

every application that starts to run after the infection.

Afterwards, it hijacks and spies normal device
operations such as access and control SMS messages.

Since it operates in memory, it is intricate to detect by

antivirus applications

The Symantec antivirus system was observed to have

serious vulnerability in its engine, mainly due to its

execution of unpackers, required by the antivirus

engines in order to decompress and search into

executable code in the kernel. Any successful attack

against them would lead to system memory

overwriting, which is essentially a buffer overflow, and

the subsequent control of the OS.

In his report, Chris (2017) noted that vulnerabilities

continue to emerge in previously untested software at

alarming rates, with 77% of applications having at least

one vulnerability on initial scan, out of which only 14%

of very high severity flaws were closed in 30 days or

less. Government organizations had the highest

prevalence of highly exploitable vulnerabilities such as

cross-site scripting (49%) and SQL injection (32%).

These vulnerabilities included risky cryptographic

practices such as using broken crypto algorithms,
improperly validating certificates, storing sensitive

information in clear text, and employing inadequate

encryption strength.

A number of open source components remain
unpatched once built into software, with 88% of Java

applications having at least one flaw in a component.

Although operations have a role to play in securing

production applications, 25% of sites were observed to

be running on web servers containing at least one high-

severity vulnerability, while 83% of organizations

released codes before testing or resolving security

issues.

Cloudflare HTML parser designed for improving

website performance was found to have exposed one in
every 3.3 million HTTP requests. This vulnerability in

content delivery network vendor Cloudflare put

millions of websites at risk with an information leakage

flaw in its software that exposed sensitive data such as

passwords, cookies, and authentication cookies for

random customers over a five-month period.

Panamanian law firm Mossack Fonseca customer-

facing website used an old version of SSL that was

vulnerable to the DROWN attack, which led to leakage

of 11.5 million files and 2.6 TB of secret data. Code

quality was observed to eventually impact the security

of the application. This includes improper resource

shutdown or release, leftover debug code, and using the

wrong operator when comparing strings. A zero-day

attack, DoubleAgent, took advantage of capability left

over in a runtime verification tool in Windows,

Microsoft Application Verifier. This tool left open the
capability to replace its standard verification execution

with a custom verifier that can be injected into any

application to give an attacker full remote code

execution.

Katerina and Jacob (2017) analyzed data from issue

tracking systems of two NASA missions which were

organized in three datasets: Ground mission IV and V

issues, Flight mission IV and V issues, and Flight

mission Developers issues. The results showed that: in

IV and V issues datasets the majority of vulnerabilities

were code related and were introduced in the

implementation phase; for all datasets, close to 90% of
the vulnerabilities were located in two to four

subsystems; out of 21 primary vulnerability classes, the

ones that dominated included exception management,

memory access, risky values, and unused entities,

which together contributed from around 80% to 90% of

vulnerabilities in each dataset. In both the Ground and

Flight mission IV and V issues datasets, the majority of

security issues, 91% and 85%, respectively, were

introduced in the implementation phase. The most

security related issues of the Flight mission Developers

issues dataset were found during code implementation,
build integration, and build verification.

Carriage Return Line Feed (CRLF) injection attack

rides on flaws involving improper output neutralization

for logs and improper neutralization of CRLF in HTTP

headers. Through these flaws, Java and Python

applications that poorly filter CRLF have been shown

to compromise firewalls. These applications are duped

into running rogue FTP connections by using

maliciously crafted URLs to trigger unauthorized

commands. Mirai malware managed to knock off

Twitter, Netflix and GitHub websites through
distributed denial of service directed at Dyn, the

Domain Name System services provider for those sites.

The attack was possible through a botnet of IoT devices

using hardcoded passwords. Cross site scripting (XSS)

vulnerability in eBay website allowed attackers to

embed malicious JavaScript in legitimate listings. This

led to their redirection to spoofed eBay login pages that

led to the hijacking of eBay accounts, setting off a

cascade of costly fraudulent activity on the this site.

The WannaCry ransomware rode on an input validation
error in a transport protocol used by Windows machines

called Server Message Block (SMB). This vulnerability

involved open redirect and unsafe reflection.

Encapsulation flaws such as trust boundary violations,

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 9 - September 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 72

protection mechanism failures, and deserialization of

untrusted data have facilitated ransomware attack

against the San Francisco Metropolitan Transit

Agency‟s Municipal Rail. Specifically, the attack

exploited a Java deserialization flaw.

V. Current State of Software Security Models

As Erlingsson (2016) explains, security models that

enable simple, useful security policies for large classes

of software are ideal. However, their simplicity

prevents them from addressing many real-world

security concerns. An ideal security model that admits

simple policies is the one that includes mechanisms to

thwart the exploits of low-level software vulnerabilities.

Stack-based buffer overflows and memory-corruption

vulnerabilities have become a primary exploit vector

and a critical software security issue. In defending
against such attacks, the security model, programmer

intent software security, has been particularly effective

at defining simple, useful security policies that

successfully prevent exploits. This model permits only

low-level executions that programmers intended to be

possible, unless given explicit, special permission.

Here, security policies are automatically derived from

software source code or binaries by identifying simple

program properties that are obviously true based on the

programming-language abstractions and semantics and

the clear intent of the programmers.

According to Tice et al., (2014), examples of this

security model is the enforcement of the programmer‟s

intended control and data flow, termed as Control-Flow

Integrity (CFI) and Data-Flow Integrity. The policies in

this model greatly constrain the attacker from

exploiting low-level vulnerabilities. Unfortunately,
many of these instantiations tie policy and mechanism

too closely and intricately together for the underlying

model to be clearly identifiable. In addition, this model

leaves other vulnerabilities such as actual logic errors

made by programmers.

Another software security model is the permit only

executions that historical evidence shows to be

common enough, unless given explicit, special

permission. This model prohibits all novel security-

relevant behavior, unless especially permitted and in so

doing, prevent many software attacks, such as
privilege-escalation exploits of the vulnerabilities

regularly discovered in esoteric operating system

services.

As Erlingsson (2016) point out, data-driven security

model is a new attractive model that is natural basis for

software security enforcement. It considers how a

software has behaved in the past, and can be naturally

combined with existing security models by simply

ensuring that operations proceed and information flows

in accordance with historical audit logs as shown in
Figure 3 and Figure 4.

Figure 3: Data-Driven Software Security Model Tied to Access Control

Principal Reference Monitor Object
Do

Operation

Authentication
Authorization

Source Request
Guard Resource

Audit

Log

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 9 - September 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 73

The primary parameters of data-driven security policies

are event abstraction employed in execution traces,

such as network service requests, API or system calls,

function calls, or simply security privileges as well as

the historical frequency by which security-relevant

events must have been seen, to be permitted in the

current execution.

Figure 4: Data-Driven Software Security Model Tied to Information Flow

An event is considered to be supported by historical

evidence if it has occurred at least once (or k times for

some fixed, low threshold k) in the execution traces;

otherwise, it is prohibited by the security policy. Such

policies are employed in network firewalls and

operating-system sandboxing. They are also ideal in

large-scale, popular software applications, which are

normally big in size, composed of innumerable

platforms, modules, and libraries, and full of arcane or
unused functionality. Since this software have various

vulnerabilities as well as embedded interpreters,

dynamic-library loaders, and reflection APIs that

attackers can exploit to perform arbitrary behavior, by

simply disallowing previously unseen security-relevant

events, such attacks can effectively be thwarted.

Thedata-driven software security model relies on the

empirical program abstraction to avoid such falsely-

reported security violations. Here, empirical programs

include all execution traces, not just those from training

runs. These traces also encompass all executions
performed during the software‟s development and

testing, which ensures that any latent, actual software

feature is represented, even for the first use of

unpopular software. Moreover, data-driven security

techniques are partially integrated into engineering

processes and preferably used throughout the software

development lifecycle. This software engineering

integration is helpful in maintaining security policies as

software is updated for security, stability, or behavior.

The results of the data analysis have been combined
with the source code examination to develop finite state

machine (FSM) models that can be used to reason about

security vulnerabilities. In a closely related work, the

analysis of 107 CERT advisories showed that

vulnerabilities of the following four types dominated:

buffer overflow (44%), integer overflow (6%), heap

corruption (8%), and format-string vulnerabilities (7%).

VI. Current Mission Critical Software Security

Countermeasures

In the maritime environment, some strategic directions

towards securing cyber technology on ships include

defense –in-depth, security policies and procedures, and
technical security solutions. In-depth includes policies,

physical security, perimeter security, network security,

application security and data security. Technical

solutions include firewalls and intrusion prevention

systems that monitor and block the data traffic as it

leaves and enters the ship‟s IT network. The dataflow

between all nodes on the network including ICS traffic

and satellite and radio communications should be

mapped out and encrypted, for instance by using VPN.

Firewalls, routers, switches, servers, voice

communication equipment, and any other device on the
network should be network hardened, which involves

secure configuration of hardware and software and the

deactivation of unused features and accounts. The usage

of secure communications protocols like SSH, HTTPS,

and SFTP is another way of protecting mission critical

infrastructure. Multi-Factor Authentication (MFA) offer

an additional layer of access security to sensitive

systems and applications while application white-listing

prevents staff from installing unapproved and

potentially malicious programs. As Mertens (2014)

explains, data-loss-prevention software can mitigate the
threat of intentional or accidental data leakage. Figure 5

presents a threatanalysis tools that can help derive

abuse and misuse cases.

Information Reference Monitor Send

/Update

Principal

/Object

Guard Source
Transmit

Sink

Audit

Log

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 9 - September 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 74

Figure 5: Microsoft SDL Threat Modeling Tool

Since Katerina and Jacob (2017) report showed that

code related security issues dominated both the Ground

and Flight mission IV and V security issues, with 95%

and 92%, respectively, enforcing secure coding

practices, verification and validation focused on coding

errors are cost effective methods of improving critical

missions‟ security.

VII. Challenges of Current Software Security

Protection

In their paper, Johansson et al., (2009) point out that

conventional IT security techniques can be applied to
protect a CPS such as a critical infrastructure system

against cyber threats or threats imposed by malicious

insiders. Unfortunately, due to the unique features of a

CPS, these security strategies and approaches are not

sufficient enough to address the security challenges of a

CPS. For instance, installing security patches or

numerous system updates requiring the taking of the

system offline is not economically justifiable, difficult,

and infeasible. In addition, new updates or security

patches may create other challenges that may a nuclear

power plant to accidentally shutdown after a software
update.

Another challenge is that there is a lack of a framework

for assessing the security in designing a CPS or

evaluating the level of the security guarantee in a

functional CPS at the design level. Consequently, it has

been demonstrated that attackers can take control of air

planes by having access to Wi-Fi services provided by

the planes. In addition, most approaches for securing

CPS consider the security of individual components of

the CPS such as sensors, PLCs, actuators, or

communication protocols. Using this isolation, they

then adopt standard practices to secure individual

components against security threats such as input

validation or firmware tampering. This is insufficient as
CPS can be attacked by compromising the interaction

between components without hacking the individual

components within a CPS. By changing the interaction

of components, attackers create different outputs than

what was requested by the operators. As an illustration,

adversaries can cause delays in transferring the

information from sensors to SCADA, activating

unwanted actions imposed by the delay in receiving the

requested results.

Unified security enforcement mechanism is infeasible

in mission critical infrastructure since these systems
employ different devices from different vendors. The

conventional approaches for safety analysis in CPS

include Fault Tree Analysis (FTA), Failure Mode and

Effects Analysis (FMEA), Hazard Analysis and Critical

Control Points (HACCP), and Hazard and Operability

Study (HAZOP). All these approaches are based on risk

assessment and risk analysis of a system and none of

them is geared towards addressing the threats that

compromise the interactions among components in a

CPS. This is because all of them consider individual

components or subsystems in isolation in addressing the
safety of a CPS.

It is noted that these approaches were designed for

safety analysis and hence cannot be used to effectively

address the security concerns in a CPS. Safety and

security are different in nature as a system may be safe

but not secure. As an illustration, a system can permit

unauthorized modifications of the control parameters

within the safe range without being detected by system

safety controllers, creating undesirable output that was

not requested by the operator.

In the software security domain, methods such as

Microsoft‟s STRIDE/DREAD or attack tree have been

developed for threat and vulnerability analysis.

Unfortunately, the application of these methods to

analysis of the security and safety-related incidents in

CPS fails to consider the interactions among different

components as well as that of the control loops. The

current practice of constructing models for Mission

Impact Assessment (MIA) is accomplished manually,

making model construction very time consuming,

expensive, difficult to document, to inspect and to
validate.

The security approaches for IT systems do not cover

embedded system security as virus definitions and

Vision

Diagram

Validate

Identify

Threats

Mitigate

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 9 - September 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 75

operating guidelines do not always apply, firewalls and

IDS or IPS are of limited value and centralized account

control is not possible. This is because network tools

and assessment techniques are unaware of embedded

systems architecture and interfaces such as unique and

insecure protocols, maintenance backdoors, hard-coded
credentials, unique architectures of embedded

controllers, and unplanned connectivity and upgrades.

The application of the data driven model in a practical

security enforcement mechanism is infeasible owing to

the challenges in the selection of the security policy to

be enforced on the first program execution.

As Arman et al., (2018) discuss, architects need to

understand the effects of the decisions on the final

system in order to make effective design decisions.

Regrettably, current assessment approaches for such

systems rely on static or dynamic analysis of system

models. Static analysis techniques call for the

development of complicated mathematical models

which require steep learning curves and significant

modeling effort, limiting the resulting system‟s
scalability. Esfahani et al., (2013) further explain that

based on the mathematical models they rely on, these

techniques are confined to particular category of

software system models, or are heavily dependent on

error-prone and sometimes inaccessible expert inputs.

On the other hand, architectural modes based on

dynamic analysis techniques are capable of capturing

the randomness reflective of reality and are ideal in

constructing models tailored to the task at hand.

However, as Langhammer et al., (2016) point out, these

models have false negatives and longer execution times.
In addition, Aleti et al., (2013) explain that simulations

of software architectural models have not been

extensively utilized compared with static analyses since

creating simulatable system designs is intricate, and

running simulations on multifarious models is time

consuming and requires explicitly addressing scalability

issues. Me et al., (2016) states that trade-offs in system

properties caused by design decisions complicate

quantitative assessment while Shahbazian et al., (2016)

elaborate that analysis of system behavior requires

massive datasets.

VIII. Proposed Software Security Models

In their paper, Luigi et al., (2017) explain that defense

software development process is aa complicated
activity due to the complex domain, requirement for a

very high quality solution and the need to satisfy very

specific and complex needs. Specifically, the command

and control software has to satisfy functional

requirements that are extremely detailed as the

situations that create them involve a large number of

assets and human resources that have to be coordinated

in a way that minimizes losses, as any trade-offs may

result in the loss of lives.

Mission critical software in any Army software must

meet integration, safety, security, real time response
and be reliable. Integration enables the software to

operate in highly interdependent ecosystem. For

instance, command and control software must allow

seamless integration with communications software to

enable inter-force communication. Security is crucial

during the development of armed forces software to

prevent unwanted intrusions and cyber attacks. Here,

vulnerabilities in systems are simply unacceptable.

Safety measures are significant to thwart inadvertent

authorization of measures which could result in severe

consequences. Real time response is critical to adapt to

an evolving situation. Reliability is important in order
to operate in hazardous conditions, in a disruptive

environment with a high level of dependability and

robustness.

Critical control networks should be in a secured zone

such as DMZ to isolate them from the corporate IT

network and the internet. Since CPSs are complex, a

system-theoretic approach that takes into consideration

the system complexity should be adopted to address the

security of a multifaceted CPS at the design level. This

enables the identification of vulnerable points,
subsystem interactions and their effects on vulnerable

points and provides recommendations on how to

increase the security of a CPS. Game- theoretic

approaches are suggested here to account for the highly

adversarial nature of cyber operations.

Team Software Process (TSP) is also suggested in

mission critical infrastructure software development. It

instills engineering discipline in software developers,

and builds high-performance trusted teams. Extending

TSP with security ensures safe design that minimizes

attack surfaces, ensures defense in depth for software
development, assures secure coding, provides tools for

supporting automated conformance checking, tracks

security defects, and monitors results of tests with

respect to security. The software supply chain need to

keep risk factors to some acceptable levels as illustrated

in Figure 6.

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 9 - September 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 76

Figure 6: Secure Software Supply Chain Model

The software source code needs to be tested by

performing rule conformance checking, thread safety

analysis, information flows across applications, and
operating system call flows. The industrial internet of

things (IIoT) should apply non-invasive techniques to

patch remote assets, and use industrial control and

automation systems that cannot easily be shut down.

Obsolete and legacy operating systems, hosts and

devices that have limited or no security built into them

should be properly managed. In addition, network

connections should be monitored and controlled to

ensure that only appropriate ones exist between

sensitive industrial equipment. The software should

have inbuilt fail-safe mechanisms to ensure that

compromised systems that run ICSs cause no physical
harm to people and property, or other severe

consequences.

Mobile devices from any manufacturer must be
controlled centrally using an Enterprise Mobile Device

Management (MDM) that restricts the functionality of

such devices to the lowest necessary to execute their

legitimate purposes, ensures that the devices have

updated operating system, installed antivirus, control

and filter web sites visited, restrict files downloaded,

centrally and control software that can be installed.

Policies and practical technical controls should be put

in place to prevent users from connecting their own

devices to Enterprise equipment as any of these devices

can be part of an attack vector to mission critical

systems.

Figure 7 shows the proposed security requirements the
cyber physical systems. As this figure demonstrates,

there are five security aspects, namely the sensing

security, communication security, actuation control

security, storage security, and feedback security.

Sensing security ensures validity and accuracy of the

sensing process while communication security protects

both inter- and intra-CPS communication from both

active and passive attackers. Actuation control security

ensures that no activation occurs without appropriate

authorization, while storage security thwarts both cyber

and physical tampering of any data stored by the CPS.

The feedback security on its part protects the control
systems in a CPS which provide the necessary feedback

for effecting actuation.

Figure 7: Cyber Physical System Security Model

The deployment of anti-malware software throughout

the ICS environment where possible, is also proposed.

The usage of a bastion host to avert unauthorized access
to protected locations in the ICS environment,

application of application white-listing to thwart the

execution of unauthorized applications, deployment of

a breach detection system, and configuring USB

lockdown on all SCADA environments are suggested.

IX. Conclusions

This paper has investigated software security issues in
mission critical systems from which a number of

security issues that expose these systems to attacks have

been discussed. Many weak spots in mission critical

infrastructure such as ship and shore-based cyber

systems have been observed. Failure to identify these

vulnerabilities has led many entities into taking

shortcuts in regard to applying and policing appropriate

security measures. In addition, it has been established

Software Supply Chain Risk for

a Product needs to be reduced

to Acceptable Levels

Supplier

Capabili

ty

Supplier

follows

practices

that

reduce

supply

chain

risks

Product

Security

Delivered

or updated

product is

acceptably

secure

Product

Distributio

n

Methods

of

transmittin

g the

product to

the

customer

guard

against

tampering

Operatio

n

Product

Control
Product

is used

in a

secure

manner

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 9 - September 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 77

that rapid cycles of software product development,

implementation, maintenance, and decommissioning

are overwhelming for the majority of these systems.

Based on these challenges, rafts of measures and

techniques that can be deployed to protect these

systems have been proposed. Future work lies on the
practical implementation of these measures into mission

critical software development life cycle and the actual

infrastructure.

References

[1] Sebastian B., & Stephan D. (2018).Towards a Theory of

Software Development Expertise. In Proceedings of the 26th

ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. Pp.

1-14.

[2] Dennis B., Guanglou Z., & Craig V. (2017). A critical analysis

of security vulnerabilities and countermeasures in a smart ship

system. Proceedings of the 15th Australian Information

Security Management Conference. Pp.81-87.

[3] Hambling D. (2017). Ships fooled in GPS spoofing attack

suggest Russian cyberweapon.

[4] National Institute of Standards and Technology. (2017).

Framework for Improving Critical Infrastructure

Cybersecurity. Draft Version 1.1.

[5] Hudson Analytix Inc. (2017). Global Threats: Cybersecurity in

Ports (Donald Duck, Daughters & Dollars. Hemispheric

Conference on Port Competitiveness & Security: Finding the

Right Balance, University of Miami, Center for International;

Business Education & Research.

[6] Symantec Security Response. (2017). Petya ransomware

outbreak: Here‟s what you need to know.

[7] Santamarta R. (2014). SATCOM terminals: Hacking by air,

sea, and land.

[8] Mertens M. (2014). Securing VSAT Terminals.

[9] Arash N., & Stuart M. (2015). A Systems Theoretic Approach

to the Security Threats in Cyber Physical Systems Applied to

Stuxnet. IEEE Transactions On Dependable And Secure

Computing. Pp. 1-20.

[10] Johansson E., Sommestad T., &Ekstedt M.(2009). Issues of

cyber security in scada-systems-on the importance of

awareness. In 20th International Conference and Exhibition

onElectricity Distribution-Part 1, IET. Pp. 1–4.

[11] Motzek A., &Möller R. (2017). Context- and bias-free

probabilistic mission. Computers & Security. Vol. 65, pp. 166-

186.

[12] Lange M., Kuhr F., &Möller R. (2016). Using a Deep

Understanding of Network Activities for Network

Vulnerability Assessment. In Proceedings of the 1st

International Workshop on AI for Privacy and Security.

[13] Noel S., Ludwig J., Jain P., Johnson D., Thomas R.,

McFarland J., King B., Webster S., &Tello B.(2016).

Analyzing Mission Impacts of Cyber Actions. In NATO IST-

128 Workshop on Cyber Attack Detection, Forensics and

Attribution for Assessment of Mission Impact, Istanbul.

[14] Mark S. (2017). Building Secure Software for Mission Critical

Systems. Software Solutions Symposium. Pp. 1-50.

[15] Tobby S. (2017). Critical Infrastructure and the Internet of

Things.Centre for International Governance Innovation and

Chatham House. Pp. 1-20.

[16] Daugherty, Paul, Prith Banerjee, WalidNegm and Allan E.

Alter. 2015. “Driving Unconventional Growth through the

Industrial Internet of Things.” Accenture.

[17] Hayden E., Michael A., & Tim C. (2014). An Abbreviated

History of Automation & Industrial Controls Systems and

Cybersecurity. A SANS Analyst Whitepaper.

[18] Kwon J. 2015. Smoking Gun: South Korea Uncovers Northern

Rival‟s Hacking Codes. CNN.

[19] Vallance C. 2016. Ukraine cyber-attacks „could happen to UK.

BBC.com

[20] Randy H., & Susan S.(2016). Secure Software Engineering

Best Practices. NSF Cybersecurity Summit. Pp. 1-140.

[21] Georgios K., Georgios G., &Athina M. (2016). Cyber Security

Trends and their implications in ICS. JRC Technical

Reports.Pp.1-28.

[22] Erlingsson U. (2016). Data-driven Software Security: Models

and Methods. ArXiv. Pp.1-7.

[23] Tice C., Roeder T., Collingbourne P., Checkoway S.,

Erlingsson U., Lozano L., and Pike G.(2014). Enforcing

forward-edge control-flow integrity in GCC & LLVM. In

Proceedings of the 23rd USENIX Conference on Security

Symposium, ser. SEC‟14. Pp. 941–955.

[24] Katerina G., & Jacob T. (2017). Experience Report: Security

Vulnerability Profiles of Mission Critical Software: Empirical

Analysis of Security Related Bug Reports. IEEE 28th

International Symposium on Software Reliability Engineering.

Pp. 152-163.

[25] Alonso J., Grottke M., Nikora A., & Trivedi K. (2013). An

empirical investigation of fault repairs and mitigations in space

mission system software. In 43rd IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN). Pp.

1–8.

[26] Cotroneo D., Grottke M., Natella R., Pietrantuono R., &

Trivedi K. (2013). Fault triggers in open-source software: An

experience report. In 24th IEEE International Symposium on

Software Reliability Engineering (ISSRE). Pp. 178–187.

[27] Grottke M., Nikora A., & Trivedi K. (2010). An empirical

investigation of fault types in space mission system software.

In 40th IEEE/IFIP International Conference on Dependable

Systems Networks (DSN). Pp. 447–456.

[28] Di Martino C., Kalbarczyk Z., Iyer R., Baccanico F., Fullop J.,

& Kramer J.(2014). Lessons learned from the analysis of

system failures at petascale: The case of Blue Waters. In 44th

IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN). Pp. 610–621.

[29] Luigi B., Angelo M., & Alberto S. (2017). iAgile: Mission

Critical Military Software Development. International

Conference on High Performance Computing & Simulation.

Pp. 545- 552.

[30] Chris W. (2017). The State Of Software Security Today.

Veracode. Pp. 1-44.

[31] Arman S., Youn K., Yuriy B., Nenad M. (2018). Poster:

MakingWell-Informed Software Design Decisions.

ACM/IEEE 40th International Conference on Software

Engineering: Companion Proceedings. Pp. 262-263.

[32] Esfahani N., Malek S., &Razavi K. (2013). GuideArch:

Guiding the exploration of architectural solution space under

uncertainty. In International Conference on Software

Engineering (ICSE). Pp. 43–52.

[33] Langhammer M., Shahbazian A., Medvidovic N., and

Reussner R. (2016). Automated extraction of rich software

models from limited system information. In IEEE/IFIP

Working Conference on Software Architecture (WICSA).Pp.

99–108.

[34] Aleti A., Buhnova B., Grunske L., Koziolek A., and

Meedeniya I. (2013). Software architecture optimization

methods: A systematic literature review. IEEE Transactions on

Software Engineering (TSE).Vol. 39, Issue 5, pp.658–683.

[35] Me G., Calero C., and Lago P.(2016). Architectural patterns

and quality attributes interaction. In IEEE Workshop on

Qualitative Reasoning about Software Architectures

(QRASA). IEEE.

[36] Shahbazian A., Edwards G., and Medvidovic N. (2016). An

end-to-end domain specific modeling and analysis platform. In

Proceedings of the 8th International Workshop on Modeling in

Software Engineering, ACM. Vol.16, pp. 8–12.

